Jetson Nano Kubernetes Kernel Guide

Build a Custom Kernel for Modern K8s Support

πŸš€ Unlock Full Kubernetes Support on Jetson Nano

The NVIDIA Jetson Nano is a powerful and compact platform for AI and edge computing, but its default kernel is missing critical features required by modern Kubernetes workloads. If you’ve run into persistent kube-proxy sync errors, broken container networking, or limited storage support, you’re not alone β€” the out-of-the-box experience just isn’t Kubernetes-friendly.

This guide provides a step-by-step walkthrough for building and deploying a fully customized, production-grade Linux kernel for Jetson Nano that enables enterprise-grade Kubernetes features. By enabling modules like netfilter, eBPF, iSCSI, NFS, and CNI bridge networking, you’ll be able to run real-world Kubernetes applications with confidence β€” directly on your Jetson Nano.

Whether you’re managing IoT edge workloads, experimenting with K3s, or turning your Nano into a full-blown node in a lightweight Kubernetes cluster, this guide will help you get there with automation, safety, and performance in mind.

Whether you’re running edge workloads, deploying a small K8s cluster, or just experimenting, this custom kernel will unlock the full potential of your Jetson Nano.



🎯 Project Overview

AspectDetails
Target PlatformJetson Nano (all variants)
Source KernelLinux 4.9.337-tegra (L4T 32.7.4)
Custom KernelLinux 4.9.337-fresh
GoalModern Kubernetes networking + storage
Time to Build60–90 minutes
Skill LevelIntermediate to Advanced

Automated Scripts

To get started quickly, you can download all three automated scripts (jetson-backup.sh,Β jetson-build-kernel.sh, andΒ jetson-deploy-and-verify.sh) directly from this Gist:

curl -O https://gist.githubusercontent.com/acerbetti/b5c14d3ecb7e3c31169fac334cb1e95f/raw/jetson-backup.sh
curl -O https://gist.githubusercontent.com/acerbetti/b5c14d3ecb7e3c31169fac334cb1e95f/raw/jetson-build-kernel.sh
curl -O https://gist.githubusercontent.com/acerbetti/b5c14d3ecb7e3c31169fac334cb1e95f/raw/jetson-deploy-and-verify.sh
chmod +x jetson-*.sh

πŸ“ These scripts encapsulate the full backup, build, and deployment workflow and are safe to run as documented below.

Backup Script: jetson-backup.sh

  • Creates complete system backup
  • Validates SSH connectivity
  • Archives Image, DTB, modules, and configs
  • Generates recovery instructions

Build Script: jetson-build-kernel.sh

  • Validates Ubuntu 18.04 environment
  • Downloads Linaro GCC 7.3.1-2018.05 toolchain
  • Applies Kubernetes-critical kernel config patches
  • Builds kernel, DTBs, and modules
  • Outputs a deployment-ready .tar.gz package

Deploy Script: jetson-deploy-and-verify.sh

  • Verifies package integrity
  • Creates rollback backups
  • Installs Image, DTB, and modules
  • Tests critical kernel features post-boot

βš™οΈ Detailed Kernel Configuration

Critical Kubernetes Fixes

  • CONFIG_NETFILTER_XT_MATCH_NFACCT=m β€” fixes kube-proxy sync errors
  • CONFIG_BRIDGE_NETFILTER=m β€” enables advanced CNI plugins

iSCSI + NFS Support

  • CONFIG_ISCSI_TCP=m and CONFIG_SCSI_ISCSI_ATTRS=m
  • CONFIG_NFS_V4_1=yCONFIG_NFS_V4_2=yCONFIG_NFSD=m

Networking Drivers

  • CONFIG_VXLAN=mCONFIG_IPVLAN=mCONFIG_MACVLAN=mCONFIG_VETH=m

Container Runtime Support

  • Cgroup configs: CONFIG_CGROUP_DEVICECONFIG_CGROUP_PIDS, etc.
  • Namespaces: CONFIG_NET_NSCONFIG_USER_NS, etc.

Security and Observability

  • CONFIG_BPF_SYSCALL=yCONFIG_SECURITY_APPARMOR=y, etc.
  • CONFIG_PERF_EVENTS=yCONFIG_FTRACE=y

βœ… All configurations validated by the build script


⚑ Quick Start

# 1. Backup (any SSH-enabled machine)
./jetson-backup.sh

# 2. Build (on Ubuntu 18.04 build machine)
./jetson-build-kernel.sh

# 3. Deploy (copy package, then run on Jetson)
scp jetson-nano-kernel-fresh-*.tar.gz jetson@<JETSON-IP>:~/
ssh jetson@<JETSON-IP>
./jetson-deploy-and-verify.sh

⏳ Total time: ~60–90 minutes (45 min build + 15 min deploy/verify)


πŸ” Manual Process

If you’re curious or want to customize deeply:

  1. Setup Ubuntu 18.04 build machine
  2. Download Linaro toolchain + L4T kernel source
  3. Extract current Jetson config
  4. Apply configuration patch
  5. Build kernel, DTB, and modules
  6. Package and transfer to Jetson
  7. Deploy + verify kernel manually

The automated scripts encapsulate all these steps.


βœ… Deployment and Validation

After rebooting into your new kernel:

uname -r  # Expect: 4.9.337-fresh
lsmod | grep -E 'nfacct|iscsi|nfs|vxlan'  # All should be present

Verify:

  • kube-proxy has no nfacct errors
  • NFS/iSCSI mounts work
  • CNI plugins (e.g., Calico, Flannel) are functional
  • Container runtime (Docker/containerd) works fine
  • Modules load cleanly

🧯 Troubleshooting and Recovery

Boot Failure?

  • Use serial console or SD card reader
  • Restore Image, DTBs, and modules from backup

Module Errors?

  • Ensure version match: uname -r == modules directory
  • Run depmod -a and modprobe

Network Broken?

  • Check ip linkbrctliptables
  • Reload bridge and netfilter modules

Container Runtime Not Starting?

  • Restart Docker/containerd
  • Check cgroup mounts

Rollback steps are documented in the backup directory.


πŸ“Š Complete Implementation Summary

FeatureBefore (Stock)After (Custom)
kube-proxy Errors❌ Frequentβœ… Resolved
iSCSI Support❌ Missingβœ… Full Support
NFS v4.1 Support⚠️ Limitedβœ… Complete
VXLAN/Overlay Network⚠️ Not Workingβœ… Enabled
BPF for Cilium⚠️ Unusableβœ… Fully Supported

Deployment Package:

jetson-nano-kernel-fresh-YYYYMMDD-HHMMSS.tar.gz
β”œβ”€β”€ Image-fresh
β”œβ”€β”€ dtb/
β”œβ”€β”€ modules/
β”œβ”€β”€ BUILD_INFO.txt
└── INSTALLATION_GUIDE.txt

Performance Impact:

MetricChange
Boot Time+2s
Memory Usage+20MB baseline
Storage+500MB
Container PerfImproved

🧠 Final Thoughts & Lessons Learned

This project wasn’t just about building a kernel β€” it was about learning how deep and fragile the base assumptions in edge Linux systems can be when placed under Kubernetes.

Here’s what I learned:

  • Toolchain matters: The exact version of Linaro GCC (7.3.1-2018.05) is essential. Using anything newer breaks the L4T kernel source.
  • Backup is not optional: Kernel missteps can leave you bootlooped or blind. Automating rollback is a life-saver.
  • Modules must match: Kernel version and module directories must match exactly or modprobe will silently fail.
  • Container support is delicate: You must explicitly enable cgroup and namespace features β€” they’re not defaults.
  • Serial console access is gold: When the GUI fails, UART saves.

With the right configs and patience, Jetson Nano goes from a hobbyist board to a production-grade, cloud-native edge node. The transformation is real β€” and now fully reproducible.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top